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Exercise prevents hyperhomocysteinemia in a dietary folate-restricted
mouse model.

Abstract
Hyperhomocysteinemia is a condition that results from altered methyl group metabolism and is associated
with numerous pathological conditions. A number of nutritional and hormonal factors have been shown to
influence circulating homocysteine concentrations; however, the impact of exercise on homocysteine and
methyl group balance is not well understood. Our hypothesis was that exercise represents an effective means
to prevent hyperhomocysteinemia in a folate-independent manner. The purpose of this study was to
determine the influence of exercise on homocysteine metabolism in a dietary folate-restricted mouse model
characterized by moderate hyperhomocysteinemia. Female outbred mice (12 weeks old) were assigned to
either a sedentary or free-access wheel exercise group. Following a 4-week acclimation period, half of the mice
in each group were provided a folate-restricted diet for 7-weeks prior to euthanasia and tissue collection. As
expected, folate-restricted sedentary mice exhibited a 2-fold increase in plasma total homocysteine
concentrations; however, exercise completely prevented the increase in circulating homocysteine
concentrations. Moreover, exercise reduced plasma homocysteine concentrations 36% within the group fed
only the control diet. The prevention of hyperhomocysteinemia by exercise appears, at least in part, to be the
result of increased folate-independent homocysteine remethylation owing to a 2-fold increase in renal betaine
homocysteine S-methyltransferase. To our knowledge, this is the first report demonstrating the prevention of
hyperhomocysteinemia by exercise in a dietary folate-restriction model. Future research will be directed at
determining if exercise can have a positive impact on other nutritional, hormonal, and genetic models of
hyperhomocysteinemia relevant to humans.
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Abbreviations: 19 

BMT; betaine-homocysteine S-methyltransferase 20 

CBS; cystathionine β-synthase 21 

GNMT; glycine N-methyltransferase 22 

MS; methionine synthase 23 

MTHFR; 5,10-methylene-tetrahydrofolate reductase 24 

PEMT; phosphatidylethanolamine N-methyltransferase 25 
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THF; tetrahydrofolate  28 
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Abstract 29 

Hyperhomocysteinemia is a condition that results from altered methyl group metabolism and is 30 

associated with numerous pathological conditions.  A number of nutritional and hormonal factors 31 

have been shown to influence circulating homocysteine concentrations; however, the impact of 32 

exercise on homocysteine and methyl group balance is not well understood.  Our hypothesis was 33 

that exercise represents an effective means to prevent hyperhomocysteinemia in a folate-34 

independent manner.  The purpose of this study was to determine the influence of exercise on 35 

homocysteine metabolism in a dietary folate-restricted mouse model characterized by moderate 36 

hyperhomocysteinemia.  Female outbred mice (12 wk old) were assigned to either a sedentary or 37 

free-access wheel exercise group.  Following a 4-wk acclimation period, half of the mice in each 38 

group were provided a folate-restricted diet for 7-wk prior to euthanasia and tissue collection. As 39 

expected, folate-restricted sedentary mice exhibited a 2-fold increase in plasma total 40 

homocysteine concentrations; however, exercise completely prevented the increase in circulating 41 

homocysteine concentrations.   Moreover, exercise reduced plasma homocysteine concentrations 42 

36% within the group fed only the control diet.  The prevention of hyperhomocysteinemia by 43 

exercise appears, at least in part, to be the result of increased folate-independent homocysteine 44 

remethylation owing to a 2-fold increase in renal betaine homocysteine S-methyltransferase.  To 45 

our knowledge, this is the first report demonstrating the prevention of hyperhomocysteinemia by 46 

exercise in a dietary folate-restriction model.  Future research will be directed at determining if 47 

exercise can have a positive impact on other nutritional, hormonal, and genetic models of 48 

hyperhomocysteinemia relevant to humans.  49 

Key Words:  folate;  hyperhomocysteinemia; exercise; betaine-homocysteine S-50 

methyltransferase; mouse  51 
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1.  Introduction 52 

 53 

The maintenance of the folate-dependent one-carbon pool and methyl group metabolism is 54 

essential for optimization of health.  Perturbations of these interrelated metabolic pathways have 55 

been implicated in a number of diseases, including cancer development, cardiovascular disease, 56 

neural tube defects, and cognitive disorders [1-4].  Homocysteine is an important intermediate in 57 

methyl group metabolism and is partially dependent on folate/ B12 for its metabolism.  58 

Hyperhomocysteinemia, a condition that can result from a lack of methyl group donors, 59 

cofactors, and/ or relevant genetic anomalies, has been shown to be an independent risk factor in 60 

the development of cardiovascular disease [5].  61 

 62 

Homocysteine is a product of transmethylation reactions involving S-adenosylmethionine 63 

(SAM), the activated form of methionine, in which a methyl group is donated to a number of 64 

acceptors, including proteins, lipids, and nucleic acids (Fig. 1) [6].  Homocysteine can be 65 

remethylated back to methionine by folate-dependent or -independent mechanisms, or undergo 66 

irreversible catabolism by transsulfuration.  Folate-dependent remethylation utilizes folic acid in 67 

its most reduced form to transfer a methyl group to homocysteine and generate methionine via 68 

the vitamin B12-dependent enzyme methionine synthase (MS).  Conversely, folate-independent 69 

remethylation of homocysteine utilizes the enzyme betaine-homocysteine S-methyltransferase 70 

(BHMT) and a methyl group from betaine, a compound derived from the oxidation of choline. 71 

Transsulfuration of homocysteine by the vitamin B6-dependent enzymes cystathionine β-72 

synthase (CBS) and cystathionine γ-lyase leads to irreversible catabolism and the eventual 73 

formation of cysteine.  Thus, homocysteine balance and the prevention of 74 
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hyperhomocysteinemia are dependent on a number of substrates, cofactors, and the proper 75 

expression and function of key enzymes. 76 

 77 

As the regulation of homocysteine balance is vital to maintain optimal health, the 78 

establishment of homocysteine management-based therapies is necessary to prevent or treat 79 

diseases related to hyperhomocysteinemia.  Recent studies examining the role of exercise as a 80 

potential means to reduce circulating homocysteine concentrations have been inconclusive, 81 

owing in large part to the variations in study design and exercise regimes [7-15].  Moreover, 82 

discrepancies within these human studies, including B-vitamin and subject training status, as 83 

well as variations in mode, intensity, and duration of test exercises, limit the strength of their 84 

conclusions [16, 17].  Mechanistically, reductions in homocysteine concentrations by exercise 85 

may be related to increased protein turnover owing to increased plasma methionine 86 

concentrations during exercise, followed by reduced concentrations below basal levels after 87 

exercise [18-21].  This fluctuation in methionine availability for methyl group metabolism may 88 

be due, in part, to the increased need of methionine for muscle anabolism, potentially resulting in 89 

diminished homocysteine production [17, 21].  However, exercise also increases the demand of 90 

vitamin B6 to support increased muscle catabolism, thereby potentially limiting its availability 91 

for transsulfuration and subsequently resulting in homocysteine accumulation [22]. 92 

 93 

  Our hypothesis was that exercise represents an effective means to prevent 94 

hyperhomocysteinemia in a folate-independent manner.  This was based on our previous 95 

research demonstrating that a gluconeogenic state and related hormonal alterations, similar to 96 

what is exhibited as a function of exercise, results in reduced homocysteine concentrations via 97 



www.manaraa.com

 
 

6 
 

enhanced folate-independent remethylation of homocysteine, as well as increased catabolism 98 

[23-26].  The aim of the present study was to assess the influence of voluntary exercise on 99 

homocysteine balance using a folate-restricted mouse model of hyperhomocysteinemia.  This 100 

moderate hyperhomocysteinemia model was utilized to represent populations that experience 101 

poor folate absorption or intake, as well as individuals with relevant polymorphisms associated 102 

with modestly high circulating homocysteine concentrations, such as the 5,10-103 

methylenetetrahydrofolate reductase (MTHFR) C677T gene [27].   104 

 105 

  106 
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2.  Methods and materials 107 

 108 

2.1.  Chemicals and reagents. 109 

 110 

Reagents were obtained as follows: [14CH3]-betaine, Moravek; DL-homocysteine thiolactone, 111 

Sigma-Aldrich Chemical; 5-[14CH3]-tetrahydrofolate, Amersham Pharmacia; S-adenosyl-L- 112 

[methyl-3H] methionine, New England Nuclear. All other reagents were of analytical grade. 113 

 114 

2.2. Animals and diets. 115 

 116 

All animal procedures and protocols were approved by and conducted in accordance with 117 

guidelines established by Iowa State University Laboratory Animal Resources. Female 118 

intercrossing outbred mice (9-10 wk of age) were obtained from Harlan (Indianapolis, IN) and 119 

initially housed in groups of 2 or 3 in a 12-h light: dark cycle and provided an AIN-93G semi-120 

purified diet (Table 1) and water ad libitum [28].  No antibiotics were added to the diets or 121 

drinking water, resulting in a moderate degree of folate deficiency as we have previously 122 

reported [24].  After an acclimation period of 3 d, mice were randomly assigned to one of 2 123 

groups: sedentary or free-access wheel exercised.  Wheel exercised-mice were housed 124 

individually to obtain accurate distance calculation. For the duration of the study, wheel 125 

exercised-mice had free-access to their wheels 24 h/ d for 5 d/ wk.  After 4 wk, half of the mice 126 

in each group were switched to a folate-restricted diet resulting in 4 groups: sedentary with 127 

control diet; sedentary with folate-restricted diet; wheel-exercised with control diet; and wheel-128 

exercised with folate-restricted diet.  After 11 wk, mice were fasted for 12 h and given an 129 
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intraperitoneal injection of freshly prepared ketamine: xylazine (90: 10 mg/kg body wt).  130 

Euthanasia consisted of exsanguination and removal of major organs for their subsequent 131 

processing as described previously [23-26].  Heparinized whole blood was collected via cardiac 132 

puncture, centrifuged at 4,000 g for 6 min, and plasma was stored at -20°C for subsequent 133 

homocysteine analysis.  Liver tissue was rapidly removed and 0.5 g portions were homogenized 134 

in 2 ml of an ice-cold buffer containing 10 mM sodium phosphate (pH 7.0), 1 mM EDTA, 1 mM 135 

sodium azide, 0.25 M sucrose, and 0.1 mM phenylmethylsulfonyl fluoride.  Homogenates were 136 

centrifuged at 20,000 g for 30 min at 4°C and the resulting supernatant was stored at -80°C for 137 

enzyme activity analysis.  One kidney was removed, homogenized in 4 vol of the same buffer, 138 

and extracts were stored similar to liver samples.  Total soluble protein concentrations were 139 

determined utilizing the Pierce Bicinchoninic Acid method (Thermo Scientific) with bovine 140 

serum albumin as the standard.  141 

 142 

2.2.  Determination of homocysteine concentrations. 143 

 144 

Plasma homocysteine concentrations were determined as described by Ubbink et al. [29] with 145 

modifications [25].  For intracellular homocysteine determination, hepatic and renal tissue were 146 

homogenized in 2 volumes of  0.4 M perchloric acid, centrifuged at 9,000 g for 10 min at 25°C, 147 

and the resulting supernatant neutralized with 8 M potassium hydroxide and treated in the same 148 

manner as the plasma samples [30].  Both intracellular and plasma samples were incubated at 149 

4°C for 30 min in a solution containing 1 mM N-acetylcysteine as an internal standard and 10% 150 

tributylphosphine in dimethylformamide.  Addition of 10% trichloroacetic acid with 1 mM 151 

EDTA was used to stop the reaction and centrifuged at 1,000 g for 5 min at 4°C.  For 152 
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derivatization, the supernatant was collected and added to a solution containing 0.125 M borate 153 

buffer (pH 9.5), 0.1% 4-fluoro-7-sulfobenzofurazan, and 1.55 M sodium hydroxide.  154 

Homocysteine detection and quantification was performed by HPLC in combination with 155 

fluorescence detection using a μBondapak C18 Radial-Pak column (Waters Associates) and a 156 

mobile phase containing 4% acetonitrile in 0.1 M potassium phosphate buffer (pH 2.1). 157 

 158 

2.3.  Enzyme activity determinations. 159 

 160 

Measurement of BHMT activity was based on the method described by Garrow [31] and 161 

performed in triplicate.  Protein aliquots of 40 and 100 μg for hepatic and renal tissue, 162 

respectively, were added to a reaction mixture containing the following: 50 mM [14CH3]-betaine, 163 

100 mM DL-homocysteine thiolactone, 500 mM Tris (pH 7.5), 50 g/L bovine serum albumin, 164 

10% 2-mercaptoethanol solution, and deionized water.  Following incubation at 37°C for 1 h, the 165 

reaction was terminated with 2.5 ml of deionized water and samples were immediately applied to 166 

Dowex 1×4 (OH form) resin columns.  Eluted fractions were collected in scintillation vials and 167 

radioactivity measured by liquid scintillation counting.    168 

 169 

MS activity measurements were performed as described [32] with 600 μg protein added to 100 μl 170 

of a reaction mixture containing freshly prepared 100 mM DL-homocysteine thiolactone, 1.3 mM 171 

cyanocobalamin, 500 mM sodium phosphate buffer (pH 7.5), 10 mM S-adenosylmethionine, 172 

82.4 mM 2-mercaptoethanol, 1 mM dithiothreitol, 15 mM 5-[14CH3]-tetrahydrofolate, and 173 

deionized water. Following incubation at 37°C for 1 h, the reaction was terminated with 800 μl 174 
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of ice-cold deionized water, applied to AG 1-X8 resin (Cl form) column, and the effluent (3 ml 175 

total) was collected in vials for liquid scintillation counting. 176 

 177 

2.4.  Statistical analyses. 178 

 179 

Means for individual treatment groups were analyzed by two-way ANOVA using SigmaStat 180 

software (SPSS, Chicago, IL).  A Student’s t-test was used to compare sedentary and exercise 181 

means within a diet group.  When means were statistically different (P≤ 0.05), Fisher’s least 182 

significant difference procedure was used for comparison [33].  183 

 184 

3.  Results 185 

 186 

3.1.  Exercise decreased weight gain in both control-fed and folate-restricted mice. 187 

 188 

Initial body weight measurements of mice across all groups were not statistically different.  189 

However, control diet exercised mice and folate-restricted diet exercised mice exhibited 24 and 190 

18% decrease, respectively, in final body weight (Table 2).  Folate-restriction was without effect 191 

on weight gain in either the sedentary or exercised group.  Thus, this experimental design can be 192 

considered a moderate degree of folate deficiency, similar to our previous report [23].  The total 193 

distance (km) of exercise was not significantly different between control diet and folate-194 

restricted diet groups.   195 

 196 

3.2.  Exercise prevented hyperhomocysteinemia in the folate-restricted dietary treatment group. 197 
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 198 

As expected, a folate-restricted diet increased plasma homocysteine concentrations >2-fold in the 199 

sedentary group (Fig. 2).  However, the addition of wheel exercise in the folate-restricted diet 200 

completely prevented the increase in homocysteine concentrations compared to the folate-201 

restricted diet sedentary group. Moreover, exercise alone decreased plasma homocysteine 202 

concentrations 36% in the control diet group.   203 

 204 

3.3.  Folate-restriction and exercise modulated hepatic homocysteine remethylation enzymes and 205 

intracellular homocysteine concentrations. 206 

 207 

A folate restricted diet increased the activity of BHMT, but was without effect on MS activity in 208 

the liver (Table 3).  In contrast, exercise reduced MS activity in both diet groups, but was 209 

without effect on hepatic BHMT activity.  Hepatic intracellular homocysteine concentrations 210 

were not statistically different when all four mean values were compared; however, the exercised 211 

groups taken together exhibited diminished homocysteine concentrations compared to the 212 

sedentary groups (P = 0.02).   213 

 214 

3.4.  Renal BHMT activity was increased by exercise. 215 

 216 

Although the amount of BHMT activity in renal tissue is significantly lower than the liver, it was 217 

markedly influenced by exercise (Fig. 3).  Exercise increased renal BHMT activity in the control 218 

and folate-restricted groups, 101 and 60%, respectively.  In contrast to the liver, renal BHMT 219 

was not altered by a folate-restricted diet alone.  220 
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4.  Discussion 221 

 222 

The benefits of exercise for human health have been well documented, particularly with respect 223 

to improving cardiovascular function [34].  Because hyperhomocysteinemia has been shown to 224 

be an independent risk factor for cardiovascular disease [5], identifying and understanding 225 

intervention strategies to promote homocysteine balance is an important goal for disease 226 

management.  To our knowledge, this is the first report clearly demonstrating that exercise can 227 

completely prevent an increase in circulating homocysteine concentrations in a dietary folate-228 

restricted mouse model of hyperhomocysteinemia, thereby supporting our original hypothesis. 229 

 230 

Although hyperhomocysteinemia has been shown to be an independent risk factor for 231 

cardiovascular disease, it is unclear what influence elevated homocysteine concentrations have 232 

on vasculature and disease progression [35].  There is little doubt that hyperhomocysteinemia 233 

plays a role in the development of cardiovascular disease.  This is not only supported by human 234 

population studies identifying it as an independent risk factor, but strong evidence resides in 235 

animal models with diet- and/ or genetic-based elevations in homocysteine concentrations [36, 236 

37].  However, clinical trials targeting homocysteine management by the utilization of B-vitamin 237 

supplementation as a means to lower circulating homocysteine concentrations have not been as 238 

effective as anticipated [38-41].  Numerous reviews have debated the various explanations for 239 

these findings and the associative vs. causal role of homocysteine in vascular disease [42-44].  240 

Nonetheless, it is clear that well-define indices of vascular disease result from animal studies 241 

utilizing genetic- and dietary-induced elevations in the concentration of plasma homocysteine . 242 
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The specific mechanism by which exercise prevents hyperhomocysteinemia owing to a folate-243 

restricted diet is not completely clear.  Homocysteine balance depends on its production from 244 

SAM-dependent transmethylation reactions, remethylation by folate-dependent and folate-245 

independent pathways, and irreversible catabolism through the transsulfuration pathway.  Here, 246 

we evaluated many of these possibilities by determining the expression and function of key 247 

regulatory enzymes involved in homocysteine production, remethylation, and catabolism.  This 248 

analysis did not provide any additional mechanistic insight with respect to the positive effect of 249 

exercise on preventing hyperhomocysteinemia.  The increase (53%) in mean hepatic BHMT 250 

activity by exercise in the control diet group did not reach statistical significance (P = 0.13), 251 

whereas MS activity was reduced in both groups by exercise.  Interestingly, a folate-restricted 252 

diet alone resulted in significant 111% elevations in hepatic BHMT activity.  Our previous 253 

folate-restriction studies using a rat model did not exhibit elevations in hepatic BHMT activity to 254 

the extent demonstrated with this mouse model [23].  Others have reported that dietary-mediated 255 

alterations in hepatic BHMT activity resulted in decreased homocysteine concentrations [45].  256 

Moreover, it has been reported that folate-deficiency results in increased concentrations of 257 

dimethylglycine and decreased circulating concentrations of betaine, indicating a potential 258 

elevation in hepatic BHMT activity [46]. 259 

 260 

A significant amount of homocysteine metabolism occurs in the kidney [47] and this tissue has 261 

been shown to be a major factor under other conditions, such as diabetes, that are characterized 262 

by aberrant homocysteine balance [30].   Although the expression of BHMT in the rodent kidney 263 

is quite low[48], we found that exercise resulted in a significant increase in renal BHMT activity 264 

in the control diet group, as well as the folate-restricted group.  It is not clear whether these 265 
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alterations in renal BHMT activity are biologically sufficient to explain the prevention of 266 

hyperhomocysteinemia by exercise.    267 

 268 

Prolonged exercise is characterized by numerous changes in circulating hormones that ultimately 269 

promote gluconeogenesis and utilization of free fatty acids.  This shift is also reflected in other 270 

gluconeogenic states, such as diabetes.  We and others have demonstrated that a diabetic state or 271 

administration of synthetic glucocorticoid compounds has a major impact on methyl group and 272 

homocysteine metabolism [23-26, 49-52].  A consistent finding from these reports is a reduction 273 

in circulating homocysteine concentrations owing to an increase in folate-independent 274 

remethylation (i.e., BHMT) and catabolism of homocysteine through the transsulfuration 275 

pathway.  This finding was the basis for our hypothesis and supports our results that exercise can 276 

prevent hyperhomocysteinemia that is the result of dietary folate restriction. 277 

  278 

It also remains a possibility that the maintenance of homocysteine balance by exercise in folate-279 

restricted mice may not be the result of direct changes in homocysteine metabolism, but rather 280 

alterations in methionine and/ or cysteine requirements as a function of protein metabolism and 281 

energy needs.  Increased muscle anabolism following exercise may increase the methionine 282 

requirement for protein synthesis, thereby limiting its availability for SAM-dependent 283 

transmethylation reactions and subsequently decreasing homocysteine production.  Alterations in 284 

intracellular methionine concentrations owing to exercise have been reported in both animal and 285 

human studies [19-22].  Transsulfuration of homocysteine provides cysteine and α-ketobutyrate, 286 

both of which can be utilized in energy production and may have increased importance in 287 

supplying the cell with energy during exercise [53].  Previous research found plasma cysteine 288 
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concentrations were decreased in exercised rats, indicating a potential increase in the utilization 289 

of cysteine for both protein synthesis and/or as a source of energy [54]. 290 

 291 

In summary, we have demonstrated that exercise represents an effective strategy to maintain 292 

homocysteine balance in a diet-mediated model of hyperhomocysteinemia. A limitation of this 293 

study and goal for future research is to determine the exercise dose (i.e., time, intensity) required 294 

to effectively prevent hyperhomocysteinemia, as well as potential adverse vascular outcomes.  295 

We have found in preliminary studies that mice subjected to a treadmill regime consisting of a 296 

specified intensity for a defined time period was nearly as effective as ad libitum wheel exercise, 297 

even though the total distance exercise was markedly less.  Future research also needs to be 298 

directed at determining the precise signal and mechanism for the impact of exercise on 299 

prevention of hyperhomocysteinemia.  Although additional research is required to define the 300 

precise relation between exercise and homocysteine balance, the impact of our observations has 301 

significant health implications for many individuals.  We anticipate that our findings will 302 

stimulate future animal and human studies directed at evaluating the impact of exercise on other 303 

dietary, hormonal, and genetic models of hyperhomocysteinemia.  304 

 305 
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Table 1 – Ingredient composition of the basal and folate-

restricted diets fed to mice 

Componentsa g/kg diet 

Casein, vitamin-free 100.0 

Cornstarch 402.0 

Glucose, monohydrate 393.0 

Corn oil 50.0 

Vitamin mixb 10.0 

Mineral mixc 40.0 

L-methionine 3.0 

Choline bitartrate 2.0 

a All diet ingredients were purchased from Harlan Teklad 

(Madison, WI), except L-methionine and choline bitartrate 

(Sigma Aldrich). 

b AIN-93-VX formulation (Harlan Teklad).  For folate-

restricted mice, a customized vitamin mix devoid of folate was 

used (Harlan Teklad). 

c AIN- 93G-MX formulation (Harlan Teklad). 
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Table 2 – Body weights and distance exercised from control and folate-restricted rats with and 

without exercise 

 Control Folate-restricted 2-Way ANOVA P-values 

 - Ex + Ex - Ex + Ex Diet Ex Diet × Ex 

Initial Weight 

(g) 
28.7±0.7 27.6±0.7 28.3±0.3 27.2±0.6 NS NS NS 

Final Weight 

(g) 
35.7±2.2a 27.0±1.1b 35.3±1.1a 29. ±1.0b 0.558 <0.001 0.384 

Total Distance 

(km) 
NA 930±101 NA 756±102    

Data are means ± S.E., n = 5-6.  Means within a column without a common superscript letter 

differ, P≤0.05.  Ex, exercise; NA, not applicable; NS, not significant.   
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Table 3 – Hepatic activity of betaine-homocysteine S-methyltransferase (BHMT) and methionine 

synthase (MS), and intracellular homocysteine (Hcy) concentrations from control and folate-

restricted rats with and without exercise 

 Control Folate-restricted 2-Way ANOVA P-values 

 - Ex + Ex - Ex + Ex Diet Ex Diet × Ex 

BHMT 

(pmol/min·mg) 
87±15a 133±21a,b 184±22b 159±25b 0.013 0.640 0.125 

MS 

(pmol/min·mg) 
108±11a 67±12b,c 89±8a,b 51±8c 0.058 <0.001 0.884 

Hcy 

(nmol/g) 
6.5±0.6 4.9±0.4 5.7±0.4 5.0±0.5 0.438 0.019 0.317 

Data are means ± S.E., n = 5-6.  Means within a column without a common superscript letter 

differ, P≤0.05.  Ex, exercise.   
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Figure Legends 

 

Fig. 1 – Methyl group and homocysteine metabolism.  Enzymes are shown in black boxes, 

whereas vitamin substrates and/or cofactors are shown in gray boxes.   Abbreviations are: 

betaine-homocysteine S-methyltransferase [BHMT]; cystathionine β-synthase [CBS]; 

dimethylglycine [DMG]; methionine synthase [MS]; methyltransferases [MTs]; 5,10-methylene-

THF reductase [MTHFR]; S-adenosylhomocysteine [SAH]; SAH hydrolase [SAHH]; S-

adenosylmethionine [SAM]; tetrahydrofolate [THF]; and methyl acceptor [X].  In addition to 

THF, this series of interrelated pathways are dependent on a number of other B-vitamins, 

including riboflavin [B2], vitamin B6, and vitamin B12. 

 

Fig. 2 – Plasma homocysteine concentrations of control and folate-restricted diet sedentary and 

wheel-exercised mice.  Half of the mice in each diet group were allowed access to an exercise 

wheel for 4 wk, after which they were then fed either a control diet or a diet without folate in the 

vitamin mix.  After an additional 7 wk, plasma samples were obtained for the measurement of 

total homocysteine concentrations.  Values are means ± SE; n = 5-6.  Bars without a common 

letter differ, P ≤ 0.05.  Bars denoted with an asterisk [*] are different from control diet sedentary 

group, P≤ 0.05.  Two-way ANOVA:  diet, P = 0.002; exercise, P < 0.001; interaction, P = 0.010. 

 

Fig. 3 - Renal betaine-homocysteine S-methyltransferase [BHMT] activity of control and folate-

restricted diet sedentary and wheel-exercised mice. Kidney samples from the control and folate-

restricted mice with or without exercise were homogenized for enzyme activity determination.  

Values are means ± SE; n = 5-6.  Bars without a common letter differ, P≤ 0.05.  BHMT activity 
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is defined as pmol/ [min • mg protein].  Two-way ANOVA:  diet, P = 0.246; exercise, P = 

0.007; interaction, P = 0.822.  
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